981 resultados para eBook in Pharmacology


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To reduce nursing shortages, accelerated nursing programs are available for domestic and international students. However, the withdrawal and failure rates from these programs may be different than for the traditional programs. The main aim of our study was to improve the retention and experience of accelerated nursing students. Methods The academic background, age, withdrawal and failure rates of the accelerated and traditional students were determined. Data from 2009 and 2010 were collected prior to intervention. In an attempt to reduce the withdrawal of accelerated students, we set up an intervention, which was available to all students. The assessment of the intervention was a pre-post-test design with non-equivalent groups (the traditional and the accelerated students). The elements of the intervention were a) a formative website activity of some basic concepts in anatomy, physiology and pharmacology, b) a workshop addressing study skills and online resources, and c) resource lectures in anatomy/physiology and microbiology. The formative website and workshop was evaluated using questionnaires. Results The accelerated nursing students were five years older than the traditional students (p < 0.0001). The withdrawal rates from a pharmacology course are higher for accelerated nursing students, than for traditional students who have undertaken first year courses in anatomy and physiology (p = 0.04 in 2010). The withdrawing students were predominantly the domestic students with non-university qualifications or equivalent experience. The failure rates were also higher for this group, compared to the traditional students (p = 0.05 in 2009 and 0.03 in 2010). In contrast, the withdrawal rates for the international and domestic graduate accelerated students were very low. After the intervention, the withdrawal and failure rates in pharmacology for domestic accelerated students with non-university qualifications were not significantly different than those of traditional students. Conclusions The accelerated international and domestic graduate nursing students have low withdrawal rates and high success rates in a pharmacology course. However, domestic students with non-university qualifications have higher withdrawal and failure rates than other nursing students and may be underprepared for university study in pharmacology in nursing programs. The introduction of an intervention was associated with reduced withdrawal and failure rates for these students in the pharmacology course.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A potential use of eBooks is to write them to specifically support first year students. Such eBooks have many advantages over published books, including tailored content and flexibility. One initiative was to write an eBook called “Getting Started” as part of a bridging course for 100-200 accelerated students in Nursing, who were about to have their first year at University at second year level. This was a formative activity to be undertaken by the students prior to the start of study. Another initiative was the writing of an eBook called “Pharmacology in One Semester”, which is available to all students, including the accelerated students, in a second year Unit. This is a plain English language version of pharmacology, which has been unpacked from the standard textbooks to improve the learning of the students. Both of these initiatives have been welcomed by the accelerated students.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: For medical and allied health students, bioscience knowledge underpins the successful scaffolding of learning in their developmental and advanced level units. Many of these students complete theory-based Bioscience units, followed by a unit in Pharmacology, which specifically requires knowledge of anatomy, physiology and microbiology. In general, studies of recall report relatively large losses over short retention intervals (months), which accumulate, but level off, for longer retention intervals (years) (Custers, 2010). However, there are no studies that specifically test the recall of bioscience knowledge by allied health students. Methods: We are tracking the recall of bioscience in nursing students prior to, and during, their Pharmacology unit. In each semester, students complete short, basic, knowledge-based MCQ quizzes on concepts from (i) the gastrointestinal system and (ii) fundamental microbiology. Students were given 5 days warning about the microbiology quizzes but were given no warning prior to the gastrointestinal system quiz. Performance in these quizzes was compared to individual student’s results in the final examination on these topics in the first semester of their degree. Results: At the start of the study, the nursing students performed better in the exam MCQs on the gastrointestinal system than on microbiology. In the exam, the students’ mean marks for the gastrointestinal system ranged from 69–83%, and this was successively reduced to 63%, 53% and 49% after 4, 9 and 16 months, respectively. The mean exam marks for microbiology was 48–58%, and this did not change significantly after 4 (63%), 9 (59%) or 16 months (47%). This suggests that warning the nursing students that they were to be quizzed on microbiology may have helped their recall. However, after 16 months regardless of the subject, the nursing students undertaking the Pharmacology unit recalled less than half of the bioscience quiz answers. Conclusions: Nursing students may not have the recall of bioscience necessary to study pharmacology, and this may limit their success in pharmacology. Reference: Custers, E. J. F. M. (2010). Long-term retention of basic science knowledge: a review study. Advances in Health Science Education, 15, 109–128.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Critical illness, acute renal failure and continuous renal replacement therapy (CRRT) are associated with changes in pharmacokinetics. Initial antibiotic dose should be based on published volume of distribution and generally be at least the standard dose, as volume of distribution is usually unchanged or increased. Subsequent doses should be based on total clearance. Total clearance varies with the CRRT clearance which mainly depends on effluent flow rate, sieving coefficient/saturation coefficient. As antibiotic clearance by healthy kidneys is usually higher than clearance by CRRT, except for colistin, subsequent doses should generally be lower than given to patients without renal dysfunction. In the future therapeutic drug monitoring, together with sophisticated pharmacokinetic models taking into account the pharmacokinetic variability, may enable more appropriate individualized dosing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signalling pathway a GPCR promotes intracellular signals though ß-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signalling through the G protein and ß-arrestin. Here we report on the dynamics of the ß2 adrenergic receptor bound to the ß-arrestin and G protein biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring the transition within the nanosecond timescale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the ß-arrestin biased agonist, N-cyclopentylbutanepherine we observe a different pattern of motions in helix 7 when compared to simulations with the G protein biased agonist, Salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs. © 2013 American Chemical Society

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serine proteases from the circulation, inflammatory cells, digestive glands and microorganisms can signal to cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors. Proteases cleave PARs at specific sites to expose tethered ligand domains that bind to and activate the cleaved receptors. Despite this irreversible mechanism of activation, PAR signaling is tightly regulated to prevent the uncontrolled stimulation of cells. Although PARs are found in all organ systems, protease signaling is of particular interest in the gastrointestinal tract, where proteases regulate neurotransmission, secretion, motility, epithelial permeability and intestinal inflammation, and can thus contribute to disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il presente studio si concentra sull’analisi degli aspetti traslazionali nella ricerca farmacologica applicata alla Gastroenterologia. La trattazione si articola in due parti: una prima elaborazione teorica, che permette di inquadrare nel contesto della ricerca traslazionale il razionale scientifico ed etico alla base delle attività sperimentali eseguite durante il triennio; una seconda parte, nella quale si riportano i metodi, i risultati e le osservazioni conclusive derivanti dallo studio sperimentale. Nella prima parte vengono analizzate alcune caratteristiche delle procedure, adottate nella ricerca in ambito farmacologico gastrointestinale, che permettono di ottenere un dato verosimile derivabile da modelli diversi rispetto all’organismo umano. Sono inclusi nella trattazione gli aspetti etici dell’utilizzo di alcuni modelli animali di patologie intestinali organiche e funzionali in relazione al loro grado di predittività rispetto alla realtà sperimentale clinica. Nella seconda parte della trattazione, viene presentato uno studio esplorativo tissutale multicentrico sul ruolo del sistema oppioide e cannabinoide nella sindrome dell’intestino irritabile (IBS). Obiettivo dello studio è la valutazione dell’espressione e la localizzazione del recettore oppioide µ (µOR), del suo ligando β endorfina (β-END) e del recettore cannabinoide 2 (CB2) nei pazienti con IBS ad alvo costipato (IBS-C) e diarroico (IBS-D), ed in soggetti sani (HC). I dati ottenuti indicano un’implicazione del sistema oppioide e cannabinoide nella risposta immune alterata riscontrata nei pazienti con IBS ed in particolare nel sottogruppo IBS-C. La presente trattazione suggerisce come la creazione di nuovi sistemi di indagine sempre più validi da un punto di vista traslazionale possa dipendere, almeno in parte, dalla capacità di integrare realtà disciplinari, tecnologie ed esperienze metodologiche diverse nel contesto della ricerca in campo biomedico e farmacologico ed in particolare tramite un mutuo scambio di informazioni tra realtà clinica e ricerca di base

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R) is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregulation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or IGF-2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon, and prostate cancer. Anti-cancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this mini review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.